

TDA Progress Report 42-119 November 15, 1994

A Simplified Integer Cosine Transform and
Its Application in Image Compression

M. Costa and K. Tong
Communications Systems Research Section

A simplified version of the integer cosine transform (ICT) is described. For
practical reasons, the transform is considered jointly with the quantization of its
coefficients. It differs from conventional ICT algorithms in that the combined fac-
tors for normalization and quantization are approximated by powers of two. In
conventional algorithms, the normalization/quantization stage typically requires as
many integer divisions as the number of transform coefficients. By restricting the
factors to powers of two, these divisions can be performed by variable shifts in
the binary representation of the coefficients, with speed and cost advantages to
the hardware implementation of the algorithm. The error introduced by the fac-
tor approximations is compensated for in the inverse ICT operation, executed with
floating point precision. The simplified ICT algorithm has potential applications
in image-compression systems with disparate cost and speed requirements in the
encoder and decoder ends. For example, in deep space image telemetry, the image
processors on board the spacecraft could take advantage of the simplified, faster
encoding operation, which would be adjusted on the ground, with high-precision
arithmetic. A dual application is found in compressed video broadcasting. Here,
a fast, high-performance processor at the transmitter would precompensate for the
factor approximations in the inverse ICT operation, to be performed in real time,
at a large number of low-cost receivers.

I. Introduction

The integer cosine transform (ICT) [1,2] is an approximation of the discrete cosine transform. It
can be implemented exclusively with integer arithmetic, with associated advantages in cost and speed
for hardware implementations. One particular version of the ICT has been chosen for the compression
algorithm of the image telemetry to be transmitted from Jupiter by the Galileo spacecraft [3].

As part of an image-compression system, the role of the ICT is to decorrelate the picture elements of
image blocks, typically of size 8 × 8, for subsequent quantization and entropy encoding. In this article, a
simplified version of the ICT is investigated. The simplification involves approximating integer divisions
by right shifts in the binary representations of the numbers and allows for faster and simpler hardware
realizations. This version of the ICT is an orthogonal transform and is only approximately normalized.
The departure from exact normalization is of little consequence since it can be compensated for in the
inverse ICT operation, performed with real arithmetic.

129

In the next section, we review the calculation of the ICT and its interface with the quantization stage
in an image compression system. In Section III, we look at two examples of quantization arrays. Then, in
Section IV, we discuss the application of the modified algorithm to the compression of a set of planetary
images. Concluding remarks are given in Section V.

II. The ICT Operation in Image Coding

We initially consider the ICT of a one-dimensional data vector X of size 8. We choose the ICT version
adopted for the Galileo image telemetry compression. This ICT is implemented by premultiplying X by
the orthogonal matrix C, given by

C =



1 1 1 1 1 1 1 1
5 3 2 1 −1 −2 −3 −5
3 1 −1 −3 −3 −1 1 3
3 −1 −5 −2 2 5 1 3
1 −1 −1 1 1 −1 −1 1
2 −5 1 3 −3 −1 5 −2
1 −3 3 −1 −1 3 −3 1
1 −2 3 −5 5 −3 2 −1


(1)

One attractive characteristic of the ICT is that the absolute values of its coefficients are equal to powers
of two, or powers of two plus one. Thus, the matrix multiplication can be efficiently executed by shifts
and additions.

Denoting the ICT vector by Y, we write Y = CX. As C is an orthogonal matrix, we have CCT = D,
where D is diagonal. Now, let ∆ denote the inverse of D. Clearly, we can factor the identity matrix I as
I =
√

∆CCT
√

∆. Thus, we can identify M =
√

∆C as an orthonormal matrix, so that MT = CT
√

∆ =
M−1. The matrix M represents the normalized ICT.

In source-compression applications, the ICT coefficients of image blocks are typically individually
quantized, and the entire block is then entropy encoded. The quantization can be implemented by
rounded integer divisions of the transformed coefficients by quantization factors. The rounded integer
division of a coefficient a by a factor q is given1 by b(a/q) + 0.5c, where bxc denotes the largest integer
smaller than or equal to x. Since normalization and quantization involve integer divisions, it makes sense
to combine both steps into a single operation. In the sequel, we extend the ICT to two-dimensional arrays
and review the details of the combined normalization and quantization operations.

First we note that

C−1 = CT∆ (2)

To verify this equation, we write CC−1 = I. Substitute C =
√

∆−1M to obtain
√

∆−1MC−1 = I.
Premultiplying this equation by MT

√
∆ gives the desired result.

To recover the data vector X from the transform Y, we premultiply Y by C−1. Thus, we have

X = C−1Y = C−1CX =
(
CT
√

∆
)(√

∆C
)
X (3)

1 In integer arithmetic calculations, the alternative expression b(a+ bq/2c)/qc is often used.

130

This equation highlights
√

∆C and CT
√

∆ as matrix representations of the direct normalized ICT and
its inverse transform, respectively.

The extension to two-dimensional blocks is straightforward. The two-dimensional ICT is a separable
transform that can be computed by successively applying one-dimensional ICTs to the columns of the
data block and then to the rows of the intermediate result. In matrix form, this is represented by
premultiplying by the transform matrix and postmultiplying by its transpose. Letting X and Y denote
the two-dimensional data block and its transform, we have

Y =
√

∆ CXCT
√

∆ (4)

and

X = CT
√

∆ Y
√

∆C (5)

The above equations can be simplified by noting that CXCT and Y are premultiplied and postmulti-
plied by the diagonal matrix

√
∆. Given two diagonal matrices, D1 and D2, and an arbitrary matrix, A,

the product D1AD2 can be more efficiently calculated by term-by-term multiplying all the elements of A
by the corresponding elements of D11D2, where 1 is a matrix of the same size as A, composed only of 1’s.
This equivalent procedure reduces the number of multiplications by one-half. Denoting the term-by-term
multiplication by the operator symbol #, we write

Y = (CXCT) # N (6)

and

X = CT (Y # N) C (7)

where the normalization matrix is defined as

N =
√

∆ 1
√

∆ (8)

It is clear in these equations that the original data block X can be exactly reconstructed from the
transform block Y . In practice, though, the transform coefficients are quantized and reproduced with
finite precision at the user end. As we have mentioned, the quantization procedure can be implemented
by rounded term-by-term integer division of the transform coefficients by an array of quantization factors.
This operation can be represented by the term-by-term multiplication of the transform matrix Y by H,
the array of inverses of the quantization factors, it being understood that the results are rounded to the
nearest integer.

Denoting the quantized transform by Y ∗, we have

Y ∗ = Y (#) H = (CXCT) # N (#) H (9)

where we use (#) to represent the nearest integer operation.

131

As it is easily verifiable, the above # operations can be permuted, and we can combine the normal-
ization and quantization arrays into a single array Q ∆= N # H so that

Y ∗ = (CXCT) (#) Q (10)

The reconstructed image block X∗ can be obtained by

X∗ = CT (Y ∗# Q∗) C (11)

where Q∗, the counterpart of the array Q, satisfies the equation

Q∗ # Q = ∆ 1 ∆ (12)

We are now ready to consider the simplified ICT implementation. Suppose the optimized normaliza-
tion/quantization matrix Q for a particular class of images has been obtained. Typically, the entries of
this matrix are approximated by integer inverses. Let Qa denote an alternative approximation of Q, with
entries composed exclusively of negative powers of two. For the approximation rule, we select the nearest
power of two, breaking ties in favor of the smaller factors. Substituting Qa for Q, the quantization proce-
dure can be implemented with simple binary shifts in the representations of the transformed coefficients,
followed by addition of 0.5, and truncation.2

Performing the quantization by binary shifts may cut the execution time by more than 50 percent as
compared with the time required by the operation with integer divisions. The exact time savings depends
on the numbers involved and on the processor architecture. In general, binary shifts are executed in
a fraction of the time required for integer divisions, which are usually executed by repeated shifts and
subtractions.

To compensate for the approximation in Q, the reconstruction is performed with the matrix Q∗a
obtained from

Q∗a # Qa = ∆ 1 ∆ (13)

III. Examples

To illustrate, we examine two examples with commonly used quantization templates.

A. Uniform Quantization

In the first example, we consider a uniform quantization template. This is one of the quantization
templates to be used in the Galileo image-compression system. In this case, H = 1, so that Q and Q∗

are equal to N =
√

∆ 1
√

∆. In practice, Q is only an integer approximation of N , so that Q∗ and Q are
slightly different.

Recalling the expression for C, we have

2 To avoid the addition of a noninteger, the alternative quantization rule given in Footnote 1 can be used.

132

D = CCT =



8 0 0 0 0 0 0 0
0 78 0 0 0 0 0 0
0 0 40 0 0 0 0 0
0 0 0 78 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 78 0 0
0 0 0 0 0 0 40 0
0 0 0 0 0 0 0 78


(14)

D 1 D =



64 624 320 624 64 624 320 624
624 6084 3120 6084 624 6084 3120 6084
320 3120 1600 3120 320 3120 1600 3120
624 6084 3120 6084 624 6084 3120 6084
64 624 320 624 64 624 320 624
624 6084 3120 6084 624 6084 3120 6084
320 3120 1600 3120 320 3120 1600 3120
624 6084 3120 6084 624 6084 3120 6084


(15)

and

√
D 1

√
D
∼=



8 25 18 25 8 25 18 25
25 78 56 78 25 78 56 78
18 56 40 56 18 56 40 56
25 78 56 78 25 78 56 78
8 25 18 25 8 25 18 25
25 78 56 78 25 78 56 78
18 56 40 56 18 56 40 56
25 78 56 78 25 78 56 78


(16)

Therefore, the normalization/quantization template is given by the matrix

Q =



8−1 25−1 18−1 25−1 8−1 25−1 18−1 25−1

25−1 78−1 56−1 78−1 25−1 78−1 56−1 78−1

18−1 56−1 40−1 56−1 18−1 56−1 40−1 56−1

25−1 78−1 56−1 78−1 25−1 78−1 56−1 78−1

8−1 25−1 18−1 25−1 8−1 25−1 18−1 25−1

25−1 78−1 56−1 78−1 25−1 78−1 56−1 78−1

18−1 56−1 40−1 56−1 18−1 56−1 40−1 56−1

25−1 78−1 56−1 78−1 25−1 78−1 56−1 78−1


(17)

and the reconstruction template Q∗ is expressed as

Q∗ =



1/8 25/624 18/320 25/624 1/8 25/624 18/320 25/624
25/624 1/78 56/3120 1/78 25/624 1/78 56/3120 1/78
18/320 56/3120 1/40 56/3120 18/320 56/3120 1/40 56/3120
25/624 1/78 56/3120 1/78 25/624 1/78 56/3120 1/78

1/8 25/624 18/320 25/624 1/8 25/624 18/320 25/624
25/624 1/78 56/3120 1/78 25/624 1/78 56/3120 1/78
18/320 56/3120 1/40 56/3120 18/320 56/3120 1/40 56/3120
25/624 1/78 56/3120 1/78 25/624 1/78 56/3120 1/78


133

Our proposed simplified ICT algorithm uses a power-of-two approximation for the elements of Q, so that
Q is replaced by Qa, given by

Qa =



8−1 32−1 16−1 32−1 8−1 32−1 16−1 32−1

32−1 64−1 64−1 64−1 32−1 64−1 64−1 64−1

16−1 64−1 32−1 64−1 16−1 64−1 32−1 64−1

32−1 64−1 64−1 64−1 32−1 64−1 64−1 64−1

8−1 32−1 16−1 32−1 8−1 32−1 16−1 32−1

32−1 64−1 64−1 64−1 32−1 64−1 64−1 64−1

16−1 64−1 32−1 64−1 16−1 64−1 32−1 64−1

32−1 64−1 64−1 64−1 32−1 64−1 64−1 64−1


(18)

and the reconstruction template Q∗a is expressed by

Q∗a =



1/8 32/624 16/320 32/624 1/8 32/624 16/320 32/624
32/624 64/6084 64/3120 64/6084 32/624 64/6084 64/3120 64/6084
16/320 64/3120 32/1600 64/3120 16/320 64/3120 32/1600 64/3120
32/624 64/6084 64/3120 64/6084 32/624 64/6084 64/3120 64/6084

1/8 32/624 16/320 32/624 1/8 32/624 16/320 32/624
32/624 64/6084 64/3120 64/6084 32/624 64/6084 64/3120 64/6084
16/320 64/3120 32/1600 64/3120 16/320 64/3120 32/1600 64/3120
32/624 64/6084 64/3120 64/6084 32/624 64/6084 64/3120 64/6084


B. JPEG Quantization

The Joint Photographic Experts Group (JPEG) has put forth an image-compression standard based
on the discrete cosine transform. A typical quantization array for this standard is given by [4]

J =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 60 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(19)

Combining this array with the ICT normalization gives the matrix

Q =



128−1 275−1 179−1 400−1 192−1 999−1 912−1 1524−1

300−1 936−1 782−1 1482−1 649−1 4524−1 3351−1 4290−1

250−1 726−1 640−1 1341−1 716−1 3184−1 2760−1 3128−1

350−1 1326−1 1229−1 2262−1 1274−1 6786−1 3351−1 4836−1

144−1 550−1 662−1 1399−1 544−1 2723−1 1843−1 1923−1

600−1 2730−1 3072−1 4992−1 2023−1 8112−1 6312−1 7176−1

877−1 3575−1 3120−1 4860−1 1843−1 6759−1 4800−1 5642−1

1799−1 7176−1 5306−1 7644−1 2798−1 7800−1 5753−1 7722−1



and its counterpart

134

Q∗ =



128/64 275/624 179/320 400/624 ...
300/624 936/6084 782/3120 1482/6084 ...
250/320 726/3120 640/1600 1341/3120 ...
350/624 1326/6084 1229/3120 2262/6084 ...
144/64 550/624 662/320 1399/624 ...
600/624 2730/6084 3072/3120 4992/6084 ...
877/320 3575/3120 3120/1600 4860/3120 ...
1799/624 7176/6084 5306/3120 7644/6084 ...

... 192/64 999/624 912/320 1524/624

... 649/624 4524/6084 3351/3120 4290/6084

... 716/320 3184/3120 2760/1600 3128/3120

... 1274/624 6786/6084 3351/3120 4836/6084

... 544/64 2723/624 1843/320 1923/624

... 2023/624 8112/6084 6312/3120 7176/6084

... 1843/320 6759/3120 4800/1600 5642/3120

... 2798/624 7800/6084 5753/3120 7722/6084


(20)

Therefore, a possible power-of-two approximation for Q is given by

Qa =



128−1 256−1 128−1 512−1 128−1 1024−1 1024−1 1024−1

256−1 1024−1 512−1 1024−1 512−1 4096−1 4096−1 4096−1

256−1 512−1 512−1 1024−1 512−1 2048−1 2048−1 2048−1

256−1 1024−1 1024−1 2048−1 1024−1 4096−1 4096−1 4096−1

128−1 512−1 512−1 1024−1 512−1 2048−1 2048−1 2048−1

512−1 2048−1 2048−1 4096−1 2048−1 8192−1 4096−1 8192−1

1024−1 4096−1 2048−1 4096−1 2048−1 8192−1 4096−1 4096−1

2048−1 8192−1 4096−1 8192−1 2048−1 8192−1 4096−1 8192−1


and the corresponding reconstruction array is

Q∗a =



128/64 256/624 128/320 512/624 ...
256/624 1024/6084 512/3120 1024/6084 ...
256/320 512/3120 512/1600 1024/3120 ...
256/624 1024/6084 1024/3120 2048/6084 ...
128/64 512/624 512/320 1024/624 ...
512/624 2048/6084 2048/3120 4096/6084 ...
1024/320 4096/3120 2048/1600 4096/3120 ...
2048/624 8192/6084 4096/3120 8192/6084 ...

... 128/64 1024/624 1024/320 1024/624

... 512/624 4096/6084 4096/3120 4096/6084

... 512/320 2048/3120 2048/1600 2048/3120

... 1024/624 4096/6084 4096/3120 4096/6084

... 512/64 2048/624 2048/320 2048/624

... 2048/624 8192/6084 4096/3120 8192/6084

... 2048/320 8192/3120 4096/1600 4096/3120

... 2048/624 8192/6084 4096/3120 8192/6084


(21)

135

It is interesting to note that the power-of-two approximation can also be considered in a dual ap-
plication, where the encoder is capable of performing floating point arithmetic at high speed, and the
compressed images need to be recovered at a large number of low-cost receivers. In this situation, which
could be encountered, for example, in broadcast video applications, it would be beneficial to replace the
reconstruction array Q∗ given in Eq. (20) by a power-of-two approximation. This approximation would
have to be precompensated by a quantization array composed of real numbers, such that the term-by-term
product of the two arrays produces ∆ 1 ∆ [cf. Eq. (13)].

IV. Practical Results

The simplified algorithm was compared with the conventional ICT algorithm in the compression of
three 800 × 800, 8-bit typical planetary images. The comparisons were made in terms of the rate-
distortion trade-off, expressed in plots of the peak signal-to-noise ratio (PSNR) as a function of the
achieved compression ratio (CR). The PSNR of 8-bit images is defined by 10 log10(2552/MSE), where
MSE denotes the mean square error of the reconstructed image. The CR is defined as the ratio between
the number of bits in the original image and the number of bits in the compressed image.

Figure 1 shows the rate-distortion performance obtained for image “ant9,” with the standard ICT and
the simplified algorithms. The original is a noisy, hard-to-compress image, with a large number of streaks
caused by α-particle effects on the CCD sensor array.

The quantization array (H) is uniform, and the set of 7 points corresponding to each algorithm was
obtained by weighting the combined normalization/quantization array given in Eqs. (16) and (17) by 1,
2, 4, 8, 16, 32, and 64. The weights were chosen as powers of two, since the use of arbitrary weights would
obviously interfere with the practicality of the simplified algorithm. A smoother variation of the rate-
distortion points can be obtained by progressively weighting pieces of the quantization array. For example,
the bottom-right half of the array, which corresponds to higher frequency terms, could be weighted first,
before the adjustment is extended to the rest of the array. Clearly, a large number of weighting strategies
are possible and their relative performances will depend on the image being compressed.

From Fig. 1, we notice that the two algorithms are quite comparable in performance. The maximum
separation between the interpolated curves, occurring at the higher compression ratios, is approximately
one-third of a dB in PSNR (approximately a 7-percent variation in MSE). Figure 2 presents a similar
plot for image “r4,” a somewhat “busy” image with little sensor noise. Figure 3 shows results with
“saturn1,” an easier image to compress, reaching a compression ratio of 60 at the reasonable PSNR of
34 dB. In both cases, the observed performances obtained with uniform quantization are very similar,
the maximum separation between the interpolated curves amounting to about one-quarter of a dB, or a
6-percent variation in MSE.

To exemplify the potential savings in computation time, we consider the processor of Galileo’s attitude
and articulation control subsystem (AACS) [5], to be used also for onboard image compression. The times
required for an addition and an integer division are 5 and 13.25 µsec, respectively. Thus, normalization
and quantization of a conventional 8 × 8 ICT block requires 64× 18.25 µsec = 1.168 msec (one addition
and one division per transform coefficient, according to the formula in Footnote 1). Alternatively, a
fixed-length binary shift operation takes from 2.5 to 6.5 µsec, depending on the length. Estimating an
average duration of 4.5 µsec for binary shifts, the time required for normalization/quantization of an
8 × 8 ICT block is 64 × 9.5 µsec = 608 µsec with the simplified implementation. Thus, a savings of
560 µsec per ICT block can be realized. Nevertheless, two factors contribute to making the proposed
scheme not applicable to Galileo. First, the AACS processor does not take full advantage of the binary
shift implementation. There are no instructions for variable-length binary shifts, so additional time is
required for setting the length. Second, a significant fraction (74 percent) of the average time needed for
compressing images with the AACS processor is spent on the entropy encoding stage (a combination of
run length and Huffman code), due to the intense memory accessing required.

136

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

60

50

40

30

20
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P
S

N
R

, d
B

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

AAA
SIMPLIFIED ICT

STANDARD ICT

COMPRESSION RATIO

Fig. 1. PSNR as a function of compression ratio for image "ant9," with uniform quantization.

60

50

40

30

20
0 2 4 6 8 10 12 14 16 18 20

P
S

N
R

, d
B

COMPRESSION RATIO

Fig. 2. PSNR as a function of compression ratio for image "r4," with uniform quantization.

AAA
SIMPLIFIED ICT

STANDARD ICT

137

60

55

50

45

40

0 5 10 15 20 25 30 35 40 45 50 55 60 65

P
S

N
R

, d
B

AAA
SIMPLIFIED ICT

STANDARD ICT

COMPRESSION RATIO

Fig. 3. PSNR as a function of compression ratio for image "saturn1," with uniform quantization.

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

30

35

V. Conclusions

This article described a simplification of the integer cosine transform. The simplified transform is
orthogonal and approximately normalized. This transform is considered in the context of an image com-
pression system in which normalization and quantization operations are performed jointly, exclusively by
means of additions and binary shifts. The departure from a perfectly normalized transform is compensated
for in the inverse transform operation, performed with real arithmetic. Alternatively, the power-of-two
approximation can be used at the inverse transform operation, having been preconditioned by the proper
real arithmetic during the direct transform calculation. The algorithm is useful in applications with
disparate speed and complexity constraints at the points where the direct and inverse transforms are cal-
culated. The performance of the simplified transform is compared with that of a conventional ICT in the
compressing of a set of three planetary images. The distortion-rate characteristics of the two algorithms
are found to be very similar, differing only by a fraction of a dB in PSNR. The advantage of using the
simplified transform is the reduction in time required for normalization and quantization. This reduction
is generally processor-dependent and can be significant in special-purpose hardware implementations.

138

References

[1] W.-K. Cham, “Development of Integer Cosine Transforms by the Principle of
Dyadic Symmetry,” IEE Proceedings, vol. 136, pt. I, no. 4, pp. 276–282, August
1989.

[2] K.-M. Cheung, F. Pollara, and M. Shahshahani, “Integer Cosine Transform for
Image Compression,” The Telecommunications and Data Acquisition Progress
Report 42-105, vol. January–March 1991, Jet Propulsion Laboratory, Pasadena,
California, pp. 45–53, May 15, 1991.

[3] K.-M. Cheung and K. Tong, “Proposed Data Compression Schemes for the
Galileo S-Band Contingency Mission,” 1993 Space and Earth Science Data Com-
pression Workshop, NASA Conference Publication 3191, Snowbird, Utah, pp. 99–
109, April 2, 1993.

[4] W. Pennebaker and J. Mitchell, JPEG Still Image Compression Standard, New
York: Van Nostrand Reinhold, 1993.

[5] HAL/S ATAC 16M Reference Documents, Document 52-054614, Applied Tech-
nologies Advanced Computer.

139

